
Virtual Memory for the
Sprite Operating System

Michael N. Nelson

Report No. UCB/CSD 86/301

June 1986

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 1986 2. REPORT TYPE

3. DATES COVERED
 00-00-1986 to 00-00-1986

4. TITLE AND SUBTITLE
Virtual Memory for the Sprite Operating System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Sprite is an operating system being designed for a network of powerful personal workstations. A virtual
memory system has been designed for Sprite that currently runs on the Sun architecture. This virtual
memory system has several important features. First, it allows processes to share memory. Second, it
allows all of the physical pages of memory to be in use at the same time; that is, no pool of free pages is
required. Third, it performs remote paging. Finally, it speeds program startup by using free memory as a
cache for recently-used programs.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

33

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

--

Virtual Memory for the Sprite Operating System

Michael N. Nelson

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA g4720

Abstract

Sprite is an operating system being designed for a network of powerful personal

workstations. A virtual memory system has been designed for Sprite that current

ly runs on the Sun architecture. This virtual memory system has several impor

tant features. First, it allows processes to share memory. Second, it allows all of

the physical pages of memory to be in use at the same time; that is, no pool of

free pages is required. Third, it performs remote paging. Finally, it speeds pro

gram startup by using free memory as a cache for recently-used programs. t

t This work was supported in part by the Defense Advanced Research Projects Agen

cy under contract N00039-85-C-0269, in part by the National Science Foundation under

grant ECS-8351961, and in part by General Motors Corporation.

--"

Virtual Memory for the Sprite Operating System June 20, 1086

1. Introduction

This paper describes the virtual memory system for the Sprite operating sys

tem. Sprite's virtual memory model is similar in many respects to Unix 4.2BSDt,

but bas been redesigned to eliminate unnecessary complexity and to support three

changes in computer technology that have occurred recently or are about to

occur: multiprocessing, networks, and large physical memories. The resulting

implementation is both simpler than Unix and more powerful. In order to show

the relationship between the Sprite and Unix virtual memory systems, this paper

not only provides a description of Sprite virtual memory, but also where appropri

ate describes the Unix virtual memory system and compares it to Sprite.

Although Sprite is being developed on Sun workstations, its eventual target is

SPUR, a new multiprocessor RISC workstation being developed at U.C. Berkeley

[lllLL 85]. In order to support the multiprocessor aspect of SPUR, the user-level

view of virtual memory provided by Unix has been extended in Sprite to allow

processes to share writable segments. Section 2 compares the Sprite and Unix vir

tual memory systems from the user's view, and Section 3 describes the internal

data structures used for the implementation of writable segments.

Although Sprite provides more functionality than Unix with features such as

shared writable segments, an equally important contribution of Sprite is its reduc

tion of complexity. Unix requires that a portion of the page frames in memory be

kept available to handle page faults. These page frames are kept on a list called

the free list. The problem with the free list is that extra complexity is required to

manage it and page faults are required for processes that reference pages that are

on the list. Sprite has eliminated the need for a free list which has resulted in less

complex algorithms and more efficient use of memory. The Sprite page replace

ment algorithms are described in section 4.

Another major simplification in Sprite has been accomplished by taking

advantage of high-bandwidth networks like the Ethernet. These networks have

influenced the design of Sprite's virtual memory by allowing workstations to share

high-performance file servers. As a result, most Sprite workstations will be disk

less, and paging will be carried out over the network. This use of file servers has

allowed Sprite to use much simpler methods than Unix for demand loading of

code and managing backing store. Section 5 describes the characteristics of Sprite

file servers and how they are used by the virtual memory system, including how

ordinary files, accessed over the network, are used for backing store.

Another key aspect of modern engineering workstations that Sprite takes

advantage of is the advent of large physical memories. Typical sizes today are 4-

16 Mbytes; within a few years workstations will have hundreds of Mbytes of

memory. Large physical memories offer the opportunity for speeding program

startup by using free memory as a cache for recently-used programs; this

t All future references to Unix in this paper will refer to Unix 4.2BSD unless other

wise specified.

- 1 -

--

Virtual Memory for the Sprite Operating System

mechanism is described in Section 6.

The design given here ha.s been implemented and tested on Sun workstations.

Section 7 gives some statistics and performance measurements for the Sun imple

mentation.

2. Shared Memory

Processes that are working together in parallel to solve a problem need an

interprocess communication (IPC) mechanism to allow them to synchronize and

share data. Since Sprite will eventu:>Jly be ported to a multiprocessor architec

ture, IPC is needed to allow users to exploit the parallelism of the multiprocessor.

The traditional methods of IPC are shared writable memory and messages. Sprite

uses shared writable memory for IPC because of considerations of efficiency and

the SPUR architecture:

• Shared writable memory is at least as efficient as messages since shared writ

able memory uses the lowest-level hardware primitives without any addi

tional layers of protocol.

• The SPUR architecture is designed to make sharing memory both simple to

implement in the operating system and efficient for processes to use.

The rest of this section describes the user-level view of shared memory in both

Unix and Sprite. The user-level view of shared memory in Unix is given because

the Sprite view is just an extension of the Unix view.

2.1. Unix Sharing

In Unix the address space for a process consists of three segments: code, heap,

and stack (see Figure 1). Processes can share code segments but they cannot

share heap or stack segments. Thus writable shared memory cannot be used for

IPC in Unix. There are two system calls in Unix that allow the code sharing.

One call is fork which is used for process creation. The other call is exec which is

used to overlay the calling process's program image with a new program image.

\Vhen a process calls fork, a new process is created that shares the caller's

(parent's) code segment and gets its own copy of the parent's heap and stack seg

ments. When a process calls exec, the process will get new stack and heap seg

ments and will share code with any existing process that is using the same code

segment.

2.2. Sprite Sharing

In Sprite processes can share both code and heap segments. Sharing the heap

segment permits processes to share writable memory. Sprite has system calls

equivalent to the Unix fork and exec that allow this sharing of code and heap.

The Sprite exec is identical in functionality to the Unix exec. The Sprite fork is

similar to the Unix fork except that it will also allow a process to share the heap

segment of its parent. \Vhen a process is created by fork it is given an identical

copy of its parent's stack segment, it shares its parent's code segment, and it can

- 2 -

Virtual Memory for the Sprite Operating System

Code

I
IIII[-Next pa~e boundary

after coele end

·· Heap
..

.

Stack

'----------'·~ Highest address

June 20, 1086

Figure 1. The Unix and Sprite Address Space. The address space for a process
is made up of three segments: code, heap, and stack. The code segment begins at
address 0, is of fixed size, is read-only and contains the object code for the pro
cess. The heap segment begins on the next page boundary after the end of the
code segment and grows towards higher addresses. It contains all statically
allocated variables and all dynamically-allocated memory from memory allocators.
The stack segment begins at the highest address and grows towards lower ad
dresses. Thus the stack and the heap segment grow towards each other.

either share its parent's heap segment or it can get an identical copy. Whether or
not a child shares its parent's heap is the option of the parent when it calls fork.

3. Segment Structure

Although to the user the address spaces of Unix and Sprite look identical, the
two operating systems have different internal representations of segments. In this
section the internal segment structure of each system is described. For a descrip
tion of how the segment structure is used in each system to implement shared
memory on the Sun-2 and V A..X architectures see Appendix A.

3.1. Unix Segments

\Vhen a Unix process is created or overlaid, its address space is broken up
into the three segments a.s previously described. A'3sociated with each process is a
page table for the code and heap segments, a page table for the stack segment,
backing store for the heap and stack segments, and a pointer to a structure that
contains the backing store for the code segment (see Figure 2). In addition, all
processes that are sharing the same code segment are linked together. Thus page

- 3 -

Virtual Memory for the Sprite Operating System

Code and heap

page table. ~

St&ck page

table.

Heap b&cking

store.

Stack backing

store.

Pointer to code

data. structure.

Process A

Code backing

, store.

Code and heap

p&ge table.

Stack page

table.

Heap backing

store.

Sta.ck backing

store.

Pointer to code

data. structure.

Process B

June 20, 1086

Figure 2. The state of two Unix processes that are sharing code. Both process
A and process B have their own page tables for code, heap, and stack segments,
and their own backing store for heap and stack segments. Each points to a com
mon data structure that contains the backing store for the code segment. In ad
dition the two processes are linked together.

tables are kept on a per-process basis rather than a per-segment basis and backing
store is kept on a per-segment basis. If a code segment is being shared, then the
code portion of the code and heap page table for all processes that are sharing the
segment is kept consistent. This means that when any process that is sharing
code has the code portion of its code and heap page table updated, the page
tables in all processes that are sharing the segment are updated.

3.2. Sprite Segments

Sprite has a different notion of segments than Unix. In Sprite, information
about segments is kept in a separate data structure, independent of process con
trol blocks. Each process contains pointers to the records describing its three seg
ments. Each segment has its own page table and backing store. Thus segments
and backing store are both allocated on a per-segment basis. Since page tables
are associated with each segment instead of each process, processes that share
code or heap segments automatically share the same page tables. Figure 3 gives
an example of two Sprite processes sharing code and heap.

4. Page Replacement Algorithms

Several different page replacement algorithms have been developed. The
most commonly used types of a.lgorithms are those that are based on either a

- 4-

--

Virtual Memory for the Sprite Operating System June 29, 1986

Pa.ge ta.ble.

Ba.cking store.

Segment 1
Pointer to Pointer to

/ '-
code segment. Pa.ge ta.ble. code segment.

I Ba.cking store. \
Pointer to I Pointer to

/ '
hea.p segment. Segment 2 hea.p segment.

Pointer to Pa.ge ta.ble. Pointer to

sta.ck segment. sta.ck segment.
Ba.cking store.

Segment 3
Process A Process B

Pa.ge ta.ble.
I

Ba.cking store.

Segment 4

Figure 3. The state of two Sprite processes that are sharing code and heap. All
that the process state contains is pointers to the three segments. Since process A
and process B are sharing heap and code, they point to the same heap and code
segments. However, each process has its own stack segment.

least-recently-used (LRU) page replacement policy, a first-in-first-out (FIFO) page
replacement policy, or a working set policy [DENN 68]. LRU and FIFO algo
rithms are used to determine which page frame to replace when handling a page
fault. In an LRU algorithm the page that is chosen for replacement is the page
that has not been referenced by a process for the longest amount of time. In a
FIFO type of algorithm, the page that is replaced is the one that was least
recently paged in. Both LRU and FIFO can be applied either to all pages in the
system (a global policy) or only those pages that are owned by the faulting process
(a local policy). Algorithms that use a global policy allow processes to have a
variable-size partition of memory whereas algorithms that use a local policy nor
mally give processes fixed-size memory partitions.

Unlike the LRU or FIFO page replacement policies, the working set policy
does not determine which page to replace at page fault time, but rather attempts
to determine which pages a process should have in memory to minimize the
number of page faults. The working set of a process is those pages that have been

- 5-

Virtual Memory for the Sprite Operating System June 20, 1086

referenced in the last T seconds. Any pages that have not been referenced in the

last T seconds are eligible to be used for the working sets of other processes. A

process is not allowed to run unless there is a sufficient amount of free memory to

fit .all of the pages in its working set in memory.

Studies of algorithms that use LRU, FIFO and working set policies have

yielded the following results:

• Algorithms that use an LRU policy have better performance (where better

performance is defined to be a lower average page fa~lt rate) than those that

use a FIFO policy [KING 71].

• Algorithms that use global LRU have better performance than ones that use

local LRU with fixed-size memory partitions [OLIV 74].

• The global LRU and working set policies provide comparable performance

[OLIV 74, BABA 81a].

These results indicate that Sprite should use either a global LRU algorithm or an

algorithm that uses the working set policy. In practice, these two types of algo

rithms are approximated rather than being implemented exactly. The first part of

this section provides a description of three operating systems that have already

implemented an approximation of one of these algorithms. In addition a fourth

operating system, VMS, is presented that implements a different type of algorithm

that can give an approximation to global LRU. The second part of this section

provides a description of the Sprite page replacement algorithms.

4.1. Implementations of Page Replacement Algorithms

4.1.1. Multics

The Multics paging algorithm [CORB 69] is generally referred to as the clock

algorithm. The algorithm has been shown to provide a good approximation of

global LRU [GRIT 75]. In the algorithm all of the pages are arranged in a circu

lar list. A pointer, called the clock hand, cycles through the list looking for pages

that have not been accessed since the last sweep of the hand. When it finds

unreferenced pages, it removes them from the process that owns them and puts

them onto a list of free pages. If the page is dirty, it is written to disk before

being put onto the free list. This algorithm is activated at page fault time when

ever the number of free pages falls below a lower bound. Whenever the algorithm

is activated several pages are put onto the list of free pages.

The clock algorithm is relatively simple to implement. The only hardware

support required is reference and modified bits. In fact the Unix version of the

clock algorithm was implemented without any hardware reference bits [BABA

81a, BABA 81b].

- 6-

Virtual Memory for the Sprite Operating System June 20, 1086

4.1.2. Tenex

There are very few examples of operating systems that have implemented

algorithms that use the working set policy. An example of an operating system

that implements something similar to it is Tenex [BOBR 72]. There are two main

differences between the policy used by Tenex and the working set policy. First,

instead of defining the working set of a process to be those pages that have been

referenced in the last r seconds, it is defined to be the set of pages that keeps the

page fault frequency down to an acceptable level. Second, instead of removing

pages from the working set as soon as they have been unreferenced for r seconds,

pages are only removed from the working set at page fault time.

The actual algorithm used in Tenex is the following. Whenever a process

experiences a page fault, the average time between page faults is calculated. If it

is greater than PV A, a system parameter, then the process is considered to be

below its working set size. In this case the requested page is brought into memory

and added to the working set. If the page fault average is below PVA, then before

loading the requested page into memory the size of the working set is reduced by

using an LRU algorithm. Since removing pages is costly, whenever the working

set is reduced all sufficiently old pages are removed.

Chu and Operbeck [CHU 76] performed some measurements of an algorithm

that is very similar to the algorithm used in Tenex. They showed that this type

of algorithm is able to produce performance comparable to that of algorithms that

use Dennings working set policy.

4.1.3. VMS

VMS uses a fixed-size memory partition policy [LEVY 82, KENA 84]. Each

process is assigned a fixed-size partition of memory called its resident set. When

ever a process reaches the size of its resident set, the process must release a page

for every page that is added to its resident set. VMS uses a simple first-in-first

out (FIFO) policy to select the page to release. There are two lists that contain

pages that are not members of any process's resident set: the free list and the

dirty list. Both of these lists are managed by an LRU policy. Whenever a page is

removed from a process's resident set it is put onto the free list if it is clean or the

dirty list if it is dirty. The two lists are used when handling a page fault. If the

page that is faulted on is still on one of the lists then it is removed from the list

and added to the process's resident set. Otherwise the page on the head of the

free list is removed, loaded with data, and added to the process's resident set.

Once the dirty list gets too many pages on it, some are cleaned and moved to the

free list.

The VMS algorithm is interesting for two reasons. First, it does not require

reference bits. Second, it is an example of a hybrid between a FIFO and a LRU

algorithm. Each process's local partition is managed FIFO but the global free list

is managed LRU. It has been shown that for a given program and a given

memory size, the resident set size can be set so as to achieve a fault rate close to

- 7 -

--

Virtual Memory for the Sprite Operating System June 29, 1986

that of LRU [BABA 81a]. However, the optimal resident set size for a fixed free
list size is very sensitive to changes in memory size and the program. With a
fixed sized partition for aU programs it would be very difficult to choose one parti
tiQn that would be optimal for all programs. Another problem with fixed size par
titions is that programs cannot take advantage of a large amount of free pages
once they have reached their maximum partition size. More recent versions of
VMS [KENA 84] have relaxed the restriction on the size of the resident set by
allowing the resident set size to increase to a higher limit if the free and dirty lists
contain a sufficient number of pages.

4.1.4. Unix

The Unix page replacement policy is based on a variant of the clock algo
rithm [BABA 81b]. Unlike Multics the clock algorithm is run periodically instead
of at page fault time. The data structures used to implement the clock algorithm
are the core map and the free list (see Figure 4). The core map is a large array
containing one entry for each page frame with the entries stored in order of
appearance in physical memory. It forms the circular list of pages required by the
clock algorithm. The free list is a list of pages that is used at page fault time. It
contains two types of pages: those that are not being used by any process and
those that were put onto the list by the clock algorithm. The unused pages are at
the front of the list.

The clock algorithm is simulated by a kernel process called the pageout dae
mon. It is run often enough so that there are a sufficient number of pages on the
free list to handle bursts of page faults. The pageout daemon cycles through the
core map looking for pages that have not been referenced since the last time that
they were looked at by the pageout daemon. Any unreferenced pages that it finds
are put onto the end of the free list. There are four constants used to manage the
pageout daemon. As long as the number of free pages is greater than lotsfree

(1/8 of memory on the Sun version of Untx) then the pageout daemon is not run.
When the number of free pages is between desfree (at most 1/16 of memory) and
lotsfree then the pageout daemon is run at a rate that attempts to keep the
number of pages on the free list acceptably high, while not taking more than ten
percent of the CPU. \Vhen the number of free pages falls below desfree for an
extended period of time then a process is swapped out. The process chosen to be
swapped out is the oldest of the nbig largest processes. Minfree is the minimum
tolerable size of the free list. If the free list has only minfree pages then every
time a page is removed from the free list the pageout daemon is awakened to add
more pages to the list.

The free list is used when a page fault occurs. Like VMS, there are two ways
in which the free list is used to handle a page fault. The first is if the requested
virtual page is still on the free list. If this is the case, then the page can be
reclaimed by taking it off of the free list and giving it to the faulting process. The
second way in which the free list is used is if the requested virtual page is not

- 8 -

--

Virtual Memory for the Sprite Operating System

Core Map

5

6

CJ
CJ
1::::/:::::::::J

Unused pa.ges

Deta.ched pa.ges

In-use pages

Free list

June 29, 1G86

Figure 4. Unix page replacement data structures. In this example there are 6
pages in physical memory. Pages 1 and 4 are currently being used by processes,
pages 3 and 6 have been detached from the processes that were using them by the
clock algorithm, and pages 2 and 5 are not being used by any process. Thus
pages 5, 2, 3, and 6 (in that order) are eligible to be used when a new page is
needed and pages 1 and 4 are not eligible. Pages 3 and 6 are also eligible to be
reclaimed by the process that originally owned them if the original owner faults
on them.

currently on the free list. In this case a page is removed from the front of the free
list, it is loaded with code or data, and it is given to the faulting process.

4.2. Sprite Page Replacement

We decided to base the Sprite page replacement algorithm on the clock algo
rithm because of its inherent simplicity. However, we decided to do things
differently than Unix. The main difference is that Sprite no longer uses a free list.
The free list serves an important function by eliminating the need to activate the
clock algorithm on every page fault. However, it has the disadvantage of reduc
ing the amount of memory that can be referenced without causing page faults;
any reference to a page on the free list requires a page fault to reclaim the page.
Sprite does not need a free list because it uses the clock algorithm to maintain an
ordered list of all pages in the system. \Vhen a page fault occurs this ordered list

- g-

Virtual Memory for the Sprite Operating System June 29, 1986

of pages can be used to quickly find a page to use for the page fault. This section

describes the Sprite algorithm that maintains and uses this list.

4.2.1. Data Structures

There are three data structures that the page replacement algorithm uses:

the core map, the allocate list, and the dirty list. Diagrams of all three data

structures are shown in Figure 5. The core map is identical in form to the Unix

core map. It is used by the Sprite version of the clock algorithm to help manage

the allocate list. The allocate list contains all pages except those that are on the

dirty list. All unused pages are on the front of the list and the rest of the pages

follow in approximate LRU order. The list is used when trying to find a new

page. The allocate list is managed by both a version of the clock algorithm and

the page allocation algorithm. The dirty list contains pages that are being written

to backing store. Pages are put onto the dirty list by the page allocation algo

rithm.

4.2.2. Clock Algorithm

Sprite uses a variant of the clock algorithm to keep the allocate list in

approximate LRU order. A process periodically cycles through the core map

Core Map

1

2

3
:··: ··.

i> 4

5

C=:J In-use pages

c=:=J Unused pages

Allocate List Dirty List

D D
0 0
0

Figure 5. Sprite page replacement data structures. Every page is present in the

core map and either the allocate list or the dirty list. In this example there are 5

pages in physical memory. Pages 1, 3, and 4 are currently being used by

processes and pages 2 and 5 are unused. Of the pages in use, pages 1 and 4 are

on the dirty list waiting to be cleaned.

- 10-

Virtual Memory for the Sprite Operating System June 20, 1086

moving pages that have their reference bit set to the end of the allocate list. All
pages have their reference bit cleared before they are moved to the end of the
allocate list. Since unreferenced pages are not moved by the clock algorithm,
they will migrate towards the front of the allocate list and referenced pages will
stay near the end. The rate at which the core map is cycled through is not
known yet.

4.2.3. Page Allocation

Figure 6 summarizes the Sprite page allocation algorithm. The basic algo
rithm is to remove pages from the front of the allocate list until an unreferenced,
unmodified page is found. If the frontmost page has been referenced since the last
time that it was examined by the clock algorithm, then it is moved to the end of
the allocate list. If the page is modified but not referenced since the last time that
it was examined by the clock algorithm, then it is moved to the dirty list. Once
an unreferenced, unmodified page is found it is used to handle the page fault. If
the page that is selected to handle the page fault is still being used by some pro
cess, the page must be detached from the process that owns it before it can be
given to the faulting process.

4.2.4. Page Cleaning

A kernel process is used to write dirty pages to backing store. It wakes up
when pages are put onto the dirty list. Before a page is written to backing store
its modified bit is cleared. After a page is written to backing store it is moved
back to the front of the allocate list.

4.2.5. How Much Does a Page Fault Cost

When a page fault occurs on Sprite there are three steps to processing the
page fault: find a page frame, detach it from the process that owns it (if any), and
fill the page with code or data. The overhead required to fill the page on a Sun-2
is between 3.6 ms for a zero-filled page fault (see Section 8) up to as much as 30
ms to fill the page from disk. The actual time required to the fill a page will vary
with the page size. The overhead of filling a page must be paid by any page

Unreferenced Referenced

Unmodified Take page Move to end
of page list

Move to and clear
Modified dirty list reference bit

Figure 6. Summary of Sprite page allocation algorithm.

- 11-

Virtual Memory for the Sprite Operating System June 29, 1086

replacement algorithm. The additional cost that Sprite has to pay at page fault
time because it does not keep a free list is searching the allocate list for an
unreferenced, unmodified page and then detaching the page from its owner.

_ Since the allocate list is in approximate LRU order, an unreferenced page
should be able to be found quickly. How quickly an unmodified page can be
found is dependent on the percentage of memory that is dirty. Since code pages
are read-only, there must be clean pages. If a large percentage of memory is dirty
then it might take a long search on a page fault to find a clean page. However,
since all dirty pages that were found during the search will be cleaned and then
put back onto the front of the allocate list, subsequent page faults should be able
to find clean pages very quickly. Therefore in the average case the number of
pages that have to be searched to find an unreferenced, unmodified page should
be small.

The cost of detaching a page from its owner is shown in Section 8 to be 0.3
ms. This cost combined with the cost of searching a small number of pages on
the a.llocate list is small in comparison to the cost of filling the page frame.
Therefore the overhead added because Sprite does not keep a free list should be
small relative to the large cost of either zero-filling a page or filling it from the file
server.

5. Demand Loading of Code and Backing Store Management

A virtual memory system must be able to load pages into memory from the
file system or backing store when a process faults on a page and write pages to
backing store when removing a dirty page from memory. This can be done by
either using the file system both to load pages and to provide backing store or
using the file system to load pages and using a separate mechanism for backing
store. For Sprite we chose to use the file system for both demand loading and
backing store. Examples of other systems that use the file system for backing
store are Multics [ORGA 72] and Pilot [REDE 80]. An example of a system that
uses a separate mechanism for backing store is Unix. In this section the methods
that Sprite and Unix use for demand loading of pages and managing backing store
are described in detail and compared.

5.1. Lifetime of a Page

There are three different types of pages in Unix and Sprite: read-only code
pages, initialized heap pages, and uninitialized heap or stack pages (i.e. those
whose initial contents are all zeroes). There are also three places where these
pages can live: in the file system, in backing store, or in main memory. This sec
tion describes where the three types of pages spend their lifetimes.

5.1.1. Lifetime of a Unix Page

Figure 7 shows the lifetime of the three types of Unix pages. Code pages can
live in three places: main memory, in an object file in the file system, and in

- 12-

Virtual Memory for the Sprite Operating System

File

System

L----

Zero filled

I

J

----------·

Code page ~

Initialized
heap page

U ninitialized
heap or stack
page

Memory

Backing

Store

.,.

June 20, 1086

Figure 7. Lifetime of a Unix page. Code pages and initialized heap pages begin
their life in the file system. However, once they are thrown out of memory they
are written to backing store, and spend the rest of their life in memory and back
ing store. Uninitialized heap and stack pages are filled with zeroes initially and
then spend the rest of their life in memory and backing store.

backing store. An object file is a file that contains the code and initialized heap
pages for a program. When the first page fault occurs for a code page, the page is
read from the object file into a page frame in memory. When the page is
replaced, its contents is written to backing store even though the page could not
have been modified since code pages are read-only. Subsequent reads of the code
page come from backing store. Since a code page is read-only, it only has to be
written to backing store the first time that it is removed from memory.

The lifetime of an initialized heap page is almost identical to that of a code
page. Like a code page an initialized heap page is loaded from the object file
when it is first faulted on, it is written to backing store the first time that it is
replaced and' all faults on the page after the first one load the page from backing
store. Unlike code pages, initialized heap pages can be modified. Because of this,
in addition to being written to backing store the first time that they are replaced,
initialized heap pages must be written to backing store if when they are replaced
they have been modified.

Unlike code and initialized heap pages, uninitialized heap pages and stack
pages never exist in the file system. Their entire existence is spent in memory and
in backing store. When an uninitialized heap or stack page is first faulted in, it is
filled with zeroes. When the page is taken away from the heap or stack segment,
it is written to backing store. From this point on whenever a page fault occurs
for the page, it is read from backing store. Whenever the page is thrown out of

- 13-

--

Virtual Memory for the Sprite Operating System June 29, 1086

memory, if it has been modified then it is written back to backing store.

6.1.2. Lifetime of a Sprite Page

The lifetime of a Sprite page (see Figure 8) is very similar to the lifetime of a
Unix page. The only difference is the treatment of code pages. Unlike Unix code
pages, Sprite code pages can only live in memory and in the object file. When a
page fault occurs for a code page, the page is read from the object file into a page
frame in memory. When the page is replaced, the contents are discarded since
code is read-only. Thus whenever a page fault occurs for a code page it is always
read from the object file. The reasons why Unix writes read-only code pages to
backing store and Sprite does not are explained in the next section.

6.2. Demand Loading of Code

Unix and Sprite both initially load code and initialized heap pages from
object files in the file system. However, the method of reading these pages is
different. In Sprite the pages are read using the normal file system operations. In
Unix the pages are read directly from the disk without going through the file sys
tem. In addition after a code page has been read in once, the object file is
bypassed with all subsequent reads coming from backing store. The reasons
behind the differences between Unix and Sprite are based on different perceptions

File

System

I - - ---

Zero filled
I

Code page

Initialized
heap page

U ninitialized
heap or stack
page

Memory

f--

Backing

Store

I

- - - - - - J ~-

Figure 8. Lifetime of a Sprite page. Code pages live in two places, the file sys
tem and memory. Code pages never have to live on backing store because they
are never modified. Initialized data pages live in the file system and memory until
they get modified, and then spend the rest of their life in memory and backing
store. Uninitialized heap and stack pages are filled with zeroes initially and then
spend the rest of their life in memory and backing store.

- 14-

Virtual Memory for the Sprite Operating System June 20, 1086

of the performance of the file system.

The designers of Unix believed that the file system was too slow for virtual

memory. Therefore they tried to use the file system as little as possible. This is

why Unix bypasses the file system and uses absolute disk block numbers when

demand-loading code or initialized heap pages and why it writes code pages to

backing store for subsequent page faults. When a code or initialized heap seg

ment is initially created for a process, the virtual memory system determines the

physical block numbers for each page of virtual memory that is on disk. When a

code or initialized heap page is first faulted in, the physical address is used to

determine where to read the page from. All later reads of the code page are able

to use an absolute disk address for the code page in backing store.

There are two reasons why the Unix designers believed that the Unix file sys

tem was too slow for virtual memory. The first reason is that when performing a

read through the file system there is overhead in translating from a file offset to

an absolute disk address. Thus the Unix virtual memory system uses absolute

disk addresses to eliminate this overhead. The second reason is that the file sys

tem block size was too small. In the original versions of Unix (prior to Unix

4.1BSD), the block size was only 512 bytes [THOM 78]. This severely limited file

system throughput [MCKU 84]. The solution was to write code pages to backing

store which, as will be explained later, is allocated in contiguous blocks on disk.

This allows many pages to be transferred at once, providing higher throughput.

Since Unix 4.2BSD uses large block sizes (4096 bytes or larger) there is no longer

any advantage for Unix to write code pages to backing store.

We believe that the Sprite file system is fast enough for the virtual memory

system to use it for all demand loading; there is no need to use absolute disk block

numbers or write code pages to backing store. The reason is that the file system

will be implemented using high-performance file servers which will be dedicated

machines with local disks and large physical memories. The Sprite file system will

have the following characteristics:

• The large memory of the file servers will be used as a block cache. The

cache size for the present will be around 8 Mbytes. In a few years the cache

size will probably be between 50 and 100 Mbytes. It has been shown that

when page caches are large enough (several Mbytes), disk traffic can by

reduced by 90% or more [OUST 85].

• Combined with the large cache will be large file block sizes (16 Kbytes or

more). This results in the fewest disk accesses [OUST 85].

• In addition to caching pages, the large memory can be used to cache file

indexing information to allow faster access to blocks within a file.

Since the file system is used for demand loading of code and initialized heap,

the normal file system operations can be used. When a code or heap segment is

first created the open operation is used to get a token to allow access to the object

file for future page faults. The close operation is used when the virtual memory

- 15-

--

Virtual Memory for the Sprite Operating System June 20, 1086

system has finished with an object file. The read operation is used to load in a
page when a page fault occurs. When a read operation is executed the file server
is sent the token for the file, an offset into the file where to read from, and a size.
The file server then returns the page.

The Sprite method of using a high-performance file system has several advan
tages over the Unix method of bypassing the file system. First, the virtual
memory system is simplified because it does not have to worry about the physical
location of pages on disk. This is because when demand loading a page, offsets
from the beginning of the object file are used instead of absolute disk block
numbers. These offsets can be easily calculated given any virtual address.
Second, the file server's cache can be used to increase performance. Page reads
may be able to be serviced out of the cache instead of having to go to disk.
Third, code pages do not have to be transferred to backing store.

5.3. Backing Store Management

Backing store is used to store dirty pages when they are taken away from a
segment. In Sprite each segment has its own file in the file system that it uses for
backing store. Unix on the other hand gives each CPU its own special partition of
disk space which all segments use together for backing store. The reason for the
difference is once again based on different ideas about the performance of the file
systems in Unix and Sprite.

As was said before, the Unix designers believed that the Unix file system was
too slow for the virtual memory system. Because of this a special area of disk is
allocated for the virtual memory system. \Vhen each process is created, contigu
ous chunks of backing store are allocated for each of its code, heap, and stack seg
ments. As segments outgrow the amount of backing store allocated for them,
more backing store is allocated in large contiguous chunks on disk. A table of
disk addresses for the backing store is kept for each segment. When a page is
written to disk the physical address from this table is used to determine where to
write the page. If the machine has a local disk then all backing store is allocated
on its local disk. Otherwise all backing store is allocated on a partition of the
server's disk.

Since Sprite uses a high-performance file system, all writing out of dirty
pages is done to files in the file system instead of to a special disk partition dedi
cated to backing store. The first time that a segment needs to write a dirty page
out, a file is opened. We chose not to open the file until a dirty page has to be
written out on the assumption that most segments will never have any dirty pages
written out. From this point on all dirty pages that need to be saved in backing
store are written to the file using the normal file write operation. This just
involves taking the virtual address of the page to be written and presenting it
along with the page to the file server. All reads from backing store can use the
normal file read operation by using the virtual address of the page to be read.
When the segment is destroyed, the file is closed and removed.

- 16-

Virtual Memory for the Sprite Operating System June 20, 1086

There are several advantages of using files for backing store instead of using

a separate partition of disk. First, the virtual memory system can deal with vir

tual addresses instead of absolute disk block numbers. This frees the virtual

me_mory system from having to perform bookkeeping about the location of pages

on disk. Second, no preallocated partition of disk space is required for each CPU.

This can represent a major savings in disk space. For example, under Unix each

Sun workstation requires a disk partition of approximately 16 Mbytes for backing

store, most of which is rarely used. Third, process migration - the ability to

preempt a process, move its execution state to another machine, and then resume

its execution - is simplified. In Unix, backing store is private to a machine, so the

actual backing store itself would have to be transferred if a process were

migrated. In Sprite, the backing store is part of a shared file system so only a

pointer to the file used for backing store would have to be transferred. Finally,

Sprite has the potential for higher performance. Since file servers will have large

physical memories dedicated to caching pages, the virtual memory system may be

able to get pages by hitting on the cache instead of going to disk.

There is one problem with the Sprite scheme of using files. Since disk space

is not preallocated it is possible that there may be no disk space available when a

dirty page needs to be written out of memory. This will not be a problem as long

as the file server's cache has enough room to hold all dirty pages that are written

out. However, if the file server cannot buffer all pages that are written out, then

this could be a serious problem. A solution is to create a separate partition on the

server's disk that is only used for backing store files. This should still represent a

savings in disk space over the Unix method because the partition for backing store

files can be shared by all workstations.

6. Fast Program Startup

In order for a program to run it must demand load in code and initialized

heap pages. These page faults are much more expensive than the initial faults for

stack and uninitialized heap pages because code and initialized heap faults require

a file server transaction whereas stack and uninitialized heap faults just cause new

zero-filled pages to be created. The section under shared memory described one

method of eliminating these code and initialized heap page faults by having a

newly-created process share code with another process that is already using the

desired code segment. However this is of no use if there is no process that is

actively using the code segment that is needed. In order to help eliminate code

page faults in the case when the normal shared memory mechanism will not work,

Sprite uses memory as a cache to hold pages from code segments that were

recently in use. The use of memory for this purpose is possible because of the

advent of large physical memories and the fact that code is read-only.

Caching of code pages is implemented by saving the state of a code segment

when the last process to reference it dies. The saved state includes the page table

and all pages that are in memory. Such a code segment is called inactive. All of

- 17-

Virtual Memory for the Sprite Operating System June 20, 1086

the pages associated with an inactive segment will remain in memory until they

are removed by the normal page replacement algorithm. When a process overlays

its address space with a new program image, if the code segment of the program

corresponds to one of these inactive segments, then the process will reuse the inac

tive segment instead of allocating a new one.

There are two details to the algorithm for reusing inactive segments that

need to be mentioned. First, it may be the case that when a new segment is being

created all segments are either inactive or in use. In this case the inactive seg

ment that has been inactive for the longest amount of time is recycled and used to

create the new segment. This entails freeing any memory resident pages that the

inactive segment may have allocated to it. Second, whenever a process overlays

its address space with a new program image, the code segment that is used needs

to be from the most recent version of the object file. This is accomplished by

opening the object file for the needed code segment to get a token that uniquely

identifies the current version of the file. This token is then compared to the

tokens for all inactive code segments. A match will occur only if there is a code

segment that is from the most recent version of the object file.

The actual performance improvement from the use of inactive segments can

not be measured untii the operating system becomes fully operational. However,

an indication of the reduction in startup cost can be obtained by determining the

ratio of code to initialized heap in the standard Unix programs. I examined over

300 Unix programst and determined that on the average there was nearly three

times as much code as initialized heap. This means the elimination of all code

page faults could reduce the startup cost by as much as 75 percent. The actual

improvement is dependent on how recently the program has been used, the

demand on memory and how many code and initialized heap pages are faulted in

by the program.

7. Implementation of Virtual Memory

The virtual memory system that has been described in this paper has been

fully implemented on the Sun architecture. In this section some issues related to

the implementation and performance of the virtual memory system are discussed.

7 .1. Hardware Dependencies

Certain portions of all virtual memory systems are inherently hardware

dependent. This includes reading and writing a page table entry and reading and

writing hardware virtual memory registers. Even if the code for a virtual memory

system is written in a high level language, it must be modified when it is made to

run on different machine architectures so that it can handle these hardware

t The programs that were examined came from Sun's version of /bin, /usr/bin,

/usr/local and /usr/ucb. The measurements were performed by using the size command

on each program and then taking the ratio of initialized code to initialized heap.

- 18-

Virtual Memory for the Sprite Operating System June 29, 1086

dependencies. The Sprite implementation is structured to allow these

modifications to be made easily. In contrast, the Unix implementation is not

structured to allow it to be easily ported to other architectures.

- The Unix virtual memory system was initially written for the VAX architec

ture. The implementation contains code, algorithms, and data structures that are

specifically for the VAX architecture. Instead of being isolated in a single portion

of the code, these hardware dependencies are strewn throughout the code. An

example of what is involved in porting the Unix code is the job that the people

from Sun Microsystems did when porting Unix from the VAX to the Sun. When

they did the port they did three things. First, they used the conditional compila

tion feature of C (the language that Unix is written in) to separate many of the

VAX and Sun hardware dependencies within the code. As a result the code con

sists of a mixture of VAX and Sun code separated by ifdef statements. Second,

they wrote a separate file of hardware-dependent routines to manage the Sun vir

tual memory hardware. Third, they left in some data structures and algorithms

that are there because the code was written for a VAX. An example of this is the

simulation of reference bits [BABA 81a, BABA 81b]. This was only necessary

because the VAX does not have reference bits. Even though the Sun does have

reference bits they were not used because it was simpler to stick with the simula

tion of reference bits.

Since Sprite is going to be ported to the SPUR architecture, one of my goals

was to make the virtual memory system easier to port than Unix. This involved

defining a separate set of routines that handled all hardware dependent opera

tions. These routines are called by the hardware-independent routines. When we

port Sprite to another architecture only the hardware-dependent routines should

need to be rewritten.

The result of dividing the code into hardware-dependent and hardware

independent parts is that approximately half of the code is hardware-dependent

and half hardware-independent (the actual code size is given in Table 1). Imple

mentation of the clock and page replacement algorithms, handling page faults,

creation of new segments, and the management of the segment table have been

done with hardware-independent code. Reading and writing page table entries,

validating and invalidating pages, mapping pages into and out of the kernel's

address space, and managing the Sun memory mapping hardware have all been

written as hardware-dependent code. Thus only the low-level operations have to

be reimplemented when we port Sprite to another architecture.

7 .2. Code Size

The virtual memory systems for Sprite and Unix were both written mostly in

C with a small amount being written in assembler. Tables 1 and 2 give the sizes

of the source and object codes for both systems. There are three observations

that can be made from these two tables. First of all, the Sprite source code is

- 10-

Virtual Memory for the Sprite Operating System June 20, 1086

Lines of C Lines of Assembler Bytes of

With Without \Vith \Vithout Compiled

- Comments Commentst Comments Comments Code

Machine 2423 970 359 107 8560

Dependent

Machine 2825 1095 0 0 8484

Independent

Total 5248 2065 359 107 17044

Table 1. Sprite code size. Half of the Sprite code is hardware-dependent and

half is hardware-independent. In addition almost two-thirds of the code is com

ments. Blank lines are treated as comments.

Lines of C Lines of Assembler Bytes of

\Vith \Vithout With Without Compiled

Comments Comments Comments Comments Code

Total 5855 3833 173 125 32948

Table 2. Unix code size. Unix code is a mixture of hardware-dependent and

hardware-independent code. Thus unlike Table 1 there is no differentiation in

this table between hardware-dependent and hardware-independent code. Also

note that only a little more than one-third of the code is comments. Blank lines

are treated as comments.

much more heavily documented than the Unix sources. This can be seen from the

fact that although Unix and Sprite have almost the same amount of C code

including comments, Unix has twice as many lines of code not including com

ments. The second observation is that Sprite is not as complex as Unix. This can

be seen from the fact that Unix has twice as many bytes of compiled code as

Sprite. Although code size is not an absolute measure of complexity, the fact that

Sprite requires half as much code as Unix is an approximate indication of their

relative complexities. The final observation from the two tables is the small

amount of assembly code in either system. This shows that both virtual memory

systems can be written almost entirely in a high-level language.

7 .3. Performance

Since the Sprite virtual memory system is currently running on the Sun

architecture, I have been able to do some preliminary performance evaluation of

the virtual memory system. All of the performance evaluation was done on a

Sun-2 workstation (which uses a Motorola 68010 microprocessor). This perfor

mance evaluation falls into two categories. The first is the speed of simple zero

filled page faults. The second category is the overhead of the clock algorithm.

- 20-

Virtual Memory for the Sprite Operating System June 20, 1086

This measurement consists of determining what percentage of the CPU is required
to run the clock algorithm at different rates. Things that were not measured
include the time required to read and write pages from/to backing store, the time
required to demand load a page from an object file, and the overhead required
w~en memory demand is so tight that pages have to be written to backing store.
These were not measured because they are dominated by the speed of the file
server and not the speed of virtual memory. Since we are not using the high
performance file server that we will be using in a few months, these measurements
are not a good indication of the eventual speed of the virtual memory system.

7 .3.1. Simple Page Faults

Table 3 gives the times required to perform zero-filled page faults on Sprite
and Unix. These page faults occur when either an uninitialized heap page or a
stack page is first faulted on. These simple page faults consist of getting a page,
filling it with zeroes and giving it to the process that faulted on it. In Sprite if the
page is not in use it takes 3.6 ms to zero-fill it and if it is in use it takes 3.9 ms.
Thus it only takes 0.3 ms to detach a page from a user process. Unix, which
always has free pages available, varies between 3.5 and 4.0 ms for a zero-filled
page fault. For both Unix and Sprite the portion of the zero-filled page fault time
that is spent writing zeroes into the page is approximately 1 ms.

7 .3.2. Overhead of Clock Algorithm

I was able to measure the overhead of the clock algorithm for Sprite. How
ever, I was unable to do similar measurements for the Unix clock algorithm. The
reason is that, whereas I was able to easily modify the Sprite kernel to give me
good information, it was unclear how to easily modify the Unix kernel to provide
me with the necessary information. As a result there is no comparison of the
overheads required by the Sprite clock algorithm and the Unix clock algorithm.

Table 4 shows the overhead required by the Sprite clock algorithm. In the
worst case, when all pages in memory are in use and being referenced, the algo
rithm requires between 3 and 4 percent of the CPU for each 100 pages checked
per second. In the best case when nothing is being used, it takes around one-half

Sprite Unix

Free Page 3.6 ms 3.5 to 4.0 ms

In Use Page 3.9 ----
Table 3. Time to zero-fill a page in milliseconds. The first row is the amount of
time required when the page that is being zero-filled does not have to be detached
from a process. The second row is the amount of time required when the page
must be detached from the process that owns it. Since Unix never has to detach
a page, there is no entry in the second row for Unix.

- 21-

--

Virtual Memory for the Sprite Operating System June 20, 1086

All Referenced All in Use None in Use

Pages per Execution Percent Execution Percent Execution
Second Time (sec) Slowdown Time (sec) Slowdown Time (sec)

0 360 0 360 0 360

100 376 4 367 2 362

500 415 16 390 8 370

1000 475 32 415 15 384

Table 4. Clock algorithm overhead. There are three different states for pages
examined by the clock algorithm: in use and referenced, in use and not referenced,
and not in use. An in-use-and-referenced page requires the most overhead be
cause the reference bit has to be examined and cleared, and the page moved to
the end of the allocate list. An in-use-and-not-referenced page requires the second
largest overhead because the reference bit has to be examined but it does not
have to be cleared and the page does not have to be moved. Finally, pages that
are not in use require the least amount of overhead because they can be ignored.
The above table shows the amount of overhead required to execute the clock algo
rithm for pages of the three different types at different speeds. The left column
shows the overhead when all pages in memory are in use and referenced (the
worst case). The middle column shows the overhead when all pages in memory
are in use but none are referenced. The right column shows the overhead when
no pages are in use (the best case). The overhead was measured by executing a
low priority user process that executes a simple four instruction loop 100,000,000
times. \Vbile this process was executing the clock algorithm was running at high
priority once a second. The overhead was measured by determining how much
extra time was required by the user process to complete while the clock algorithm
executed.

of one percent of the CPU. The significance of these numbers can be seen by
determining what is the maximum rate at which the clock must be run to give a
good approximation of LRU.

In order for the clock algorithm to keep the allocate list in approximate LRU
order, pages must be scanned at a rate several times that of the page fault rate.
This will guarantee that as a page rises from the end of the allocate list to the
front of the allocate list, it will be examined multiple times by the clock algorithm
giving it multiple chances to be put back onto the end of the list. Thus pages
that make it to the front of the allocate list will not have been accessed very
recently, with the exception of pages that were accessed since the last time that
the clock algorithm examined them; that is, the allocate list will be in approxi
mate LRU order.

Since the clock hand must move at several times the page fault rate, the
maximum clock rate can only be determined after determining the maximum page
fault rate. An upper bound on the page fault rate is the number of zero-filled

- 22-

Percent
Slowdown

0
0.5
3
7

Virtual Memory for the Sprite Operating System June 20, 1086

page faults that can be executed per second. At 3.6 ms per page fault, there can
be 277 of these types of page faults per second. However, this is unrealistically
pessimistic. When a page is zero-filled it is marked as dirty. Thus if all of
memory is being filled by zero-filled pages, then all of memory must be dirty.
This means that whenever a zero-filled page fault is handled a page must be writ
ten to the file used for backing store. Therefore the actual maximum sustained
rate of zero-filled pages faults is the rate that pages can be written to the file
server. Since all other types of page faults require a read from the file server, the
maximum page fault rate is limited by the speed at which pages can be read or
written from/to the file server. Assuming optimistically that it only takes 10 ms
to read or write a page from/to the file server, the upper bound on the number of
page faults per second is 100. Running the clock algorithm at a rate five times
this maximum page fault rate would require 500 pages to be scanned per second
or a worst-case overhead of 16 percent.

The page fault rate of 100 pages per second just given is a very pessimistic
estimate. There was a study done of the paging activity of several VAX comput
ers running Unix [.1\TELS 84]. It measured the number of page-ins per second aver
aged over 5, 10, 30 and 60 second intervals when the system had an average of 8
runnable processes. The results showed that the maximum page-in rate over a 5
second interval was 25 pages per second. However, the page-in activity was very
bursty and when averaged over longer intervals it dropped dramatically. For
example when averaged over 60 second intervals, the maximum page-in rate was 4
per second. The page-in rate averaged over the whole study was less than one per
second. Because of the results of this study, we expect that the actual page fault
rate that we will experience will be much smaller then the upper bound of 100
pages per second. This should result in a clock rate much lower than 500 pages
per second. In addition the overhead of the clock algorithm will not be as bad as
the worst case of 3 percent per 100 pages scanned because memory is not usually
all in use and all referenced. The combination of a lower clock rate and lower
overhead should make the actual total overhead of the clock algorithm negligible
(between one and two percent).

8. Conclusion

A virtual memory system has been presented that provides the basic func
tionality of the Unix 4.2BSD virtual memory system while being simpler, avoiding
some of its problems, and providing additional functionality. The simplifications
come from using remote servers for paging and a simplified page replacement
algorithm. A problem with Unix that is eliminated is the extra page faults
required to reclaim pages off of the free list. Sprite eliminates these extra page
faults by replacing the free list with a list that contains all of the pages in memory
in approximate LRU order. The list is then used to quickly find pages to handle
page faults. The extra functionality that Sprite provides is that it allows
processes to share writable memory and it reuses old segments to allow fast pro
gram startup. The shared writable memory allows high-speed interprocess

- 23-

Virtual Memory for the Sprite Operating System June 20, 1086

communication between processes.

The Sprite virtual memory system as described in this paper is fully opera
tional. The rest of the operating system is still under development. We hope that
Sprite will be in use by the developers by the end of Summer 1986 and in use in
the research community in 1987.

0. References

[BABA 81a]
Babaoglu, 0. "Virtual Storage Management in the Absence of Reference
Bits." Ph.D. Thesis, Computer Science Division, University of California,
Berkeley, November 1981.

[BABA 81b]
Babaoglu, 0., and Joy, W.N. "Converting a Swap-based System to do Pag
ing in an Architecture Lacking Page-Referenced Bits." Proceedings of the 8th
Symposium on Operating Systems Principles, 1981, pp. 78-86.

[BOBR 72]
Bobrow, D.G., et al. ''TENEX, a Paged Time Sharing System for the PDP-
10." Communications of the ACM, Vol. 15, No. 3, March 1972, pp. 135-143.

[CHU 76]
Chu, W., Opderbeck, H. "Program Behavior and the Page Fault Frequency
Replacement Algorithm." IEEE Computer, Nov. 1976, pp. 29-38.

[CORB 69]
Corbato, F.J. "A Paging Experiment with the Multics System." In In Honor
of Philip M. Morse (edited Feshbach and Ingard), MIT Press, Cambridge,
Mass., 1969, pp. 217-228.

[DENN 68]
Denning, P.J. "The Working Set Model for Program Behavior." Communi
cations of the ACAf, Vol. 11, No. 5, May 1968, pp. 323-333.

[GRIT 75]
Grit, D.H., and Kain, R.Y. "An Analysis of the Use Bit Page Replacement
Algorithm." Proceedings of the ACM Annual Conference, Minneapolis,
Minn., 1975, pp.187-192.

[HILL 85]
Hill, M.D., et al. "SPUR: A VLSI Multiprocessor \Vorkstation." Computer
Science Division Technical Report No. CCB/CSD 86/273, University of Cali
fornia, Berkeley, December 1985.

[KENA 84]
Kenah, L.J., Bate, S.F. VAXjVAJS Internals and Data Structures, Digital
Press, Bedford, Mass., 1984.

[KING 71]
King, W.F. ill. "Analysis of Demand Paging Algorithms." Proceedings of

- 24-

Virtual Memory for the Sprite Operating System June 2Q, 1Q86

IFIPS Congress, Ljubljana, Yugoslavia, 1971, Vol. 1, pp. 485-490.

[LEVY 82]
Levy, H., Lipman, P. "Virtual Memory Management in the VAX/VMS
Operating System." IEEE Computer, March 1982, pp. 35-41.

[MCKU 84]
McKusick, M.K., Joy, \V.N., Leffler, S.J., and Fabry, R.S. "A Fast File Sys
tem for UNIX", ACM Transactions on Computer Systems, Vol. 2, No. 3,
August 1984, pp. 181-197.

[NELS 84]
Nelson, M.N., and Duffy, J.A. "Feasibility of Network Paging and a Page
Server Design." Term project, CS 262, Department of EECS, University of
California, Berkeley, May, 1984.

[ORGA 72]
Organick, E.l. The A1ultics System: An Examination n_f Tf.q .'ltrurhJrP ~ITT

Press, Cambridge, Mass., 1972.

[OLN74]
Oliver, N.A. "Experimental data on page replacement algorithm." Proceed
ings NCC, 1974, pp. 179-184.

[OUST 85]
Ousterhout, J.K. et al. "A Trace-Driven Analysis of the 4.2 BSD UNIX File
System." Proceedings of the 10th Symposium on Operating Systems Princi
ples, 1985, pp. 15-24.

[REDE 80]
Redell, D.D. et al. "Pilot: An Operating System for a Personal Computer."
Communications of the ACM, Vol. 23, No. 2, Feb. 1980, pp. 81-92.

[THOM 78]
Thompson, K. "The Unix Time-Sharing System: Unix Implementation." Bell
System Technical Journal, Vol. 57, No. 6, July-August 1978, pp. 1931-1946.

- 25-

--

Virtual Memory for the Sprite Operating System June 20, 1Q86

Appendix A

Implementation of Sharing on VAX and Sun-2 Architectures

Section 3 described the internal representation of segments in Unix and

Sprite. This appendix describes how each system either uses or could use its

representation of segments to implement sharing on the VAX and Sun-2 architec

tures. The description of the implementation of sharing includes a description of

the memory mapping hardware provided by the VAX and Sun-2 architectures.

-:: Code ::
PT for 1=---=---=---=--=---=---::::--1= :::: :::: = -

Process A

PT for

segment 1

PT for

segment 2

-:: Heap ::

------------·-----

1------1

PT for ::=---~~~~----== __. ~ "' /
-····-······--·--·· / / /

Process B _.,. / ./
_::---li~~-p--::: / / / / /

/ /

PT for 1------1/
/

segment 3 ------------------- /

Kernel virtual

address space

/

1
~ 2

3
4

1
2

3 .
4 . .

/ 1
2
5

5

Kernel
page table

1

2

3

4

5

6

7

8

g

Physical
memory

Figure 9. Implementing Sprite on a VAX. In this example Process A and Pro

cess B are sharing code but not heap. The page tables for each process and each

of the three segments are kept in the kernel's virtual address space. The page

tables are allocated such that the code and heap portions each begin on a page

boundary. Since Processes A and B are sharing code, the kernel's page table is

set up so that the code portion of each process's page table uses the same physical

pages as those used by the page table for segment 1, the code segment that they

are sharing. In addition the kernel's page table is set up so that the heap portion

of each process's page table uses the same physical pages as the page table for the

heap segment that they are using.

- 26-

Virtual Memory for the Sprite Operating System June 2Q, 1086

A.l VAX

The VAX divides the address space of each process into the two regions PO

and P1 [KENA 84}. PO contains the code and heap and P1 contains the stack.

Page tables for each of these regions are kept in the kernel's virtual address space.

There are two registers POBR and PlBR that point to the base of the PO and P1

region page tables respectively. These two registers must be set up correctly by

the operating system whenever a user process begins executing in order to allow

virtual address translation to be performed.

The Unix organization for the page tables for a process was developed on a

VAX. This explains why the page table structure described in Section 3 came

about. \Vhen a process begins execution Unix just sets the POBR and PlBR regis

ters to point to the process's page tables. Thus the Unix page table structure

works very easily on the VAX but it still has the problem that the code page

tables of two processes that are sharing code must be kept consistent.

Sprite has not been implemented on a VAX. However, with a small addition

to the segment structure described in Section 3 it can be implemented quite easily

(see Figure g). Each segment is allocated a page table that begins on a page

boundary. In addition each process is allocated one page table for its code and

heap which begins on a page boundary. The heap portion of the page table also

begins on a page boundary. The page table entries in the kernel page table that

map a process's page table are set up so that the code portion of a process's page

table uses the same physical pages as the page table for the code segment that the

process is using. Similarly the heap portion of a process's page table uses the

same physical pages as the page table for the heap segment that the process is

using. When a process begins executing, the POBR register is set to point to the

page table for the process and the P1BR is set to point to the page table that is

associated with the stack segment. Thus there can be multiple virtual copies of

segment page tables but only one physical copy.

The advantage of the Sprite scheme over the Unix scheme is that page tables

for processes that are sharing segments automatically remain consistent. The

disadvantage is that since the heap portion of a process's page table begins on a

page boundary, heap segments must begin on 64K byte boundariest. Since the

virtual address space for a process is so large this should not be a problem.

A.2 Sun-2

Figure 10 shows a diagram of the memory mapping unit (:M:MU) provided by

the Sun-2 architecture. The memory mapping mechanism is based on the idea of

contexts. Each context is able to map the virtual address space of one process.

Since there are N contexts and one is used to map the kernel, N - 1 processes ca.n

t Each VAX page is 512 bytes and each page table entry (PTE) is four bytes. This

means that there are 128 PTEs per VAX page. Since each PTE maps 512 bytes, a VAX

page full of PTEs maps 128 * 512 or 64K bytes.

- 27-

--

Virtual Memory for the Sprite Operating System June 20, 1086

Segment

ta.ble ror

context 0

Segment

ta.ble ror

context 1

.

. .
Segment

ta.ble ror

context N

Contexts

I

I

pmegO

pmeg1

I

I Segment 0 pmeg 2
I I

I I

Segment 1

. . .
Segment M

Segment

Table

pmeg 3

. . .
pmegP

I

I

I

Page Map

Entry Groups

Pa.ge ma.p

entry 0

Pa.ge ma.p

entry 1

. . .
Pa.ge ma.p

entry Q

P:tv1EG

Figure 10. The Sun-2 memory mapping mechanism. The values for N, M, P

and Q on a Sun-2 are 8, 512, 256, and 16 respectively. The Sun-3 architecture

uses the same memory mapping mechanism as a Sun-2 with the exception that M

is equal to 2048.

be mapped at once. Before a process begins executing on the hardware a special

context register is set to indicate which context to use to translate the process's

virtual addresses. A context is broken up into M segments of Q pages each. Each

context contains a segment table with M entries each of which points to a page

map entry group (PMEG) with Q entries, one for each page. There are a total of

P P:rvffiGs for the whole system. The following procedure is performed when

translating a virtual address:

1) The context register is examined to determine which context to use.

2) The high order bits of the virtual address are used to index into the segment

table for the context to determine which of the PMEGs to use. If there is no

PMEG for the segment then a fault is generated.

3) The middle bits in the virtual address index into the P:rvffiG to select one of

the page map entries. Each page map entry contains a valid bit, a referenced

bit, a modified bit, protection bits, and the physical page frame number. If

the valid bit is not set, then a fault is generated.

4) Finally the physical page frame number is concatenated with the remaining

low order bits of the virtual address to form the physical address.

Unlike the V A..X, the Sun-2 M1v1U just described does not use page tables in

the kernel's virtual address space; all of the memory mapping information is kept

- 28-

Virtual Memory for the Sprite Operating System June 20, 1086

in hardware. However, since there are a small number of contexts (eight) and

PMEGs (256) there is not sufficient hardware to map all processes at once. There

fore page tables need to be kept in software to store the state of processes or

software segmentst when they are not mapped in hardware. In addition the lim

ited number of contexts and PMEGs must be multiplexed across all processes.

The page table structure used by Sprite and Unix is just as described in Section 3.

The remainder of this section describes the methods that Unix and Sprite use to

manage the contexts and PMEGS.

In Unix contexts are shared by all processes by using an LRU policy: the

processes that have contexts allocated to them are the ones that have run most

recently. PMEGs are shared by all contexts using a FIFO policy. As a process

faults in pages PMEGs are allocated to the context in order to map the pages. If

multiple processes that are sharing code are mapped in contexts at the same time,

as they fault in their code pages they will each use different PMEGs. Thus there

is no attempt to share P:MEGs between processes that are sharing code. When

ever a context is taken away from one process and given to another one any

PMEGs that the context has allocated to it are freed.

In Sprite, like Unix, contexts are shared between processes by using an LRU

policy and PMEGs are managed using a FIFO policy. However, unlike Unix

PMEGs are shared between software segments instead of between contexts.

When a page fault causes a PMEG to be allocated, in addition to putting a

pointer to the P:MEG in the hardware segment table, a pointer to the P:MEG is

stored in a table that is associated with the software segment that the page fault

was in. This table of P:MEGs is used to make sure that processes that are sharing

a software segment will use the same P:MEGs to map the software segment.

When a context is removed from one process and given to another, instead of

freeing any P:MEGs in that context they remain allocated to the software segment

that owns them. When a context is allocated to a process, the tables of P:MEGs

that are stored with each software segment that the process uses are copied into

the hardware segment table.

The Sprite method of managing PMEGs and contexts has two advantages

over the Unix method. First, a page fault in a software segment in one process

will have the effect of validating the page for all processes that are sharing the

software segment. Second, a process that has its context stolen from it may still

have P:MEGs allocated to it when it begins running again. The disadvantage of

the Sprite scheme is that the hardware segment tables of all processes that are

sharing software segments have to be kept consistent; if a PMEG is taken away

from a software segment of a process in one context it must be removed from all

contexts that are sharing the software segment.

For the remainder of this section, the segments that are used by the Sun hardware

will be referred to as hardware segments and the code, heap, and stack segments used by

Sprite will be refered to as software segments.

- 20-

